
Real-Time and Object-Oriented Issues for
an Inspection Workstation Application

John Albert Horst
100 Bureau Drive, Mail Stop 8230

The National Institute of Standards and Technology (NIST)
Gaithersburg, Maryland, USA 20899-8230

john.horst@nist.gov
voice: (301)975-3430

Abstract
We describe a real-time component-based

system for an inspection application. We chose the
inspection application and the accompanying task
(or scenario) so that we might fully exercise and
test our theories about real-time complex systems,
system architectures, design methodologies, and
software tools. We will describe the application,
give a history and description of our system
architecture and design methodology, describe the
real-time software tools we used, and conclude
with a discussion of real-time and object-oriented
issues we faced.

1 The Inspection Application
Our inspection workstation consists of a

coordinate measuring machine (CMM), an analog
3D contact probe, a charge-coupled device (CCD)
camera with frame grabber, and control computers.
The CMM is Cartesian in the sense that axis
motion and axis position sensing are along the
three orthogonal axes. The contact probe and
camera are mounted on the CMM arm. The
software controller sends velocity commands to
each of the three axis motors every 5 ms and it
reads each of three axis positions every 2 ms. The
axis velocity commands are converted to voltages
by a digital-to-analog converter. The voltages
drive the motors. Figure 1 shows the CMM arm,
the part to be measured, the camera mounted on
the arm, and the analog contact probe. The
application is more fully described in [Messina 99].

The application performs the following
scenario. The operator specifies the features that

need to be verified by measurement. An inspection
plan is generated automatically from the

computer-aided design (CAD) solid model of the
part. The plan is translated into dimensional
measurement interface standard (DMIS1) code. A
DMIS interpreter [Kramer 99] converts the DMIS
code into canonical control commands for the
CMM and vision subsystems. The CMM is
commanded to move to a predefined “bird’s eye
view” position. The part to be measured is placed

1 DMIS is approved by the American National

Standards Institute (ANSI) as a vendor-neutral language for
part inspection programming.

Figure 1: The inspection workstation.

on the CMM table in an arbitrary position and
orientation. The human operator signals that the
part is on the table. The system determines the
position and orientation (i.e., pose) of the part
using the camera and computer vision algorithms.
The inspection plan is performed.

The application and scenario were crafted to
have the following characteristics (in order to
exercise our theories adequately):

• large-scale, complex system requiring
modularization and encapsulation for system
perspicuity

• rich sensory processing and world modeling
• real-time sensing and command
• on-line task planning
• processing and handling of errors
• integrated human operator and human

developer interaction
• distributed control over multiple target

operating system and processor platforms
• simulation and animation
• rich interaction between CAD model features

and sensed features
Our system contains on-line inspection plan

generation, integrated operator interface, the use
of multiple software tools, the control of multiple
pieces of sensing and actuation hardware (e.g.,
probe, CMM arm, CCD camera.), and the
execution of all on multiple computing platforms.
We used a Power PC (PPC)/VxWorks target
for real-time control, a Sparc/Solaris target for
the vision subsystem, and two more separate
Sparc/Solaris platforms for inspection planning and
plan execution2. Simulation of inspection results
and animation of CMM motion are displayed on
any system with Virtual Reality Modeling Language
(VRML) software. A simulation of the CMM runs
on a Silicon Graphics, Inc. (SGI) computer.

Rich interaction with the CAD model occurs in
both the inspection plan generation and the pose
estimation tasks. The pose estimation task requires
a computer vision subsystem that consists of image
processing (the generation of constant curvature
arcs and line segments), computer vision (the
matching of sensed feature set parameters with
model feature set parameters), and operator
interface (to handle errors and signal a “good”

2 Reference to specific commercial vendors and their

products does not imply endorsement by NIST

pose). A rich and complex world model is also
required. CAD solid model features are converted
to model feature parameter sets. The model
features are ordered off-line in preparation for on-
line matching with sensed feature set parameters.

Simulation and animation occur at several levels.
The system design for CMM motion and probe
control can be linked into several separate
executables that have varying types and degrees of
simulation, from all simulation to no simulation.
This has arguably improved debugging and testing
efficiency. Simulation and animation are also
provided by two separate software subsystems that
monitored motion and measurement data and
provided real-time motion simulation/animation of
the CMM.

Real-time response was required for both motion
control and measurement via contact probe
sensing. State-of-the-art CMM motion speeds are
upwards to 300 mm/s and higher. Additionally,
real-time requirements on measurement are even
stricter. Without real-time, dependable control of
CMM arm motion, expensive contact probes can
be damaged (i.e., we must stop predictably when we
touch the part).

The component-based control system design and
run-time software tools we used provided for rich
human developer interaction as well as human
operator interaction.

2 The RCS architecture
The system architecture used is the NIST Real-

time Control System (RCS) [Albus, 96]. RCS
specifies a generic building block (or template
control node) that is copied throughout the
system. A conceptual view of an RCS generic
building block is illustrated in Figure 2. The control
nodes are connected according to the rules
established by the architecture. Each control node
contains modules with appropriate taxonomy. RCS
does not require that the modules within a control
node map directly to processing modules, though in
our implementation, they do. The taxonomy is an
attempt to divide the labor of a control node (a
building block) into subcomponents and
interconnections that will minimize component-
to-component communications bandwidth, provide
for component reuse, and minimize component
complexity. The intra-component modules within
each node are sensory processing, world modeling,
value judgement, and behavior generation (as
shown in Figure 2). Here are some examples of
what is commonly performed within these
modules. Plan generation and execution are done in

Figure 2: The RCS generic building block (or control node).

behavior generation, image processing is done in
sensory processing, pose estimation is done in
world modeling, and model feature set attributes for
the part to be measured live within the knowledge
database. This basic pattern of the node is copied
throughout the system, but each node varies in
temporal and spatial scope depending on where it
lives in the hierarchy. Of course, the actual node
contents also vary widely. This is roughly
equivalent to human military hierarchies where, for
example, a general is concerned with plans and
actions months in advance and entire battalions of
soldiers over many battlefields, but the foot soldier
may be concerned with plans and actions for only a
few minutes over a small area.

The number and placement of control nodes in
the system hierarchy are based on the tasks to be
performed and the actuators that have to be
controlled, which is to say the hierarchy is
generated by both top-down and bottom-up
considerations. It is also an iterative process
[Quintero 92]. As the system grows and develops,
one may discover a need to add or subtract nodes,
levels, or branches in the hierarchy. The number of
hierarchical levels in the system is generally
determined by a trade-off between system
complexity and system overhead. Several other
guidelines help determine the number of levels

including coordinate frames of reference and the
type of sensor data processed [Albus 96]. An
example of the latter dictates the number of levels
in our vision subsystem. The lowest level (servo)
handles the pixels, the next highest level (prim)
groups pixels into linear features (line segments
and constant curvature arcs), and the highest level
(emove) forms linear features into feature groups
or patches. For motion control applications (like
this one), three levels, elemental move (emove),
primitive (prim), and servo, seem to be sufficient
to execute high level motion commands, like
CMM_traverse_emove (see Figure 4).

Control nodes have a standard and a non-
standard interface. The standard interface is
between supervisor and subordinate nodes. This
interface always consists of command from
supervisor to subordinate and status from
subordinate to supervisor. The non-standard
interface allows any node to communicate with
any other as required. For example, in our
application, we provided the probe_touched
event to several nodes at various locations in the
hierarchy. Finally, a node is allowed only one
supervisor node per sampling cycle.

A description of the RCS methodology will
further clarify these concepts.

3 The RCS Methodology
The RCS methodology consists of step-by-step

instructions for building a complex, real-time
system. The goal of the methodology is to
facilitate system design and maintenance efficiency

To begin, the system developer defines the
highest level task and identifies the resources
available (e.g., sensors and actuators). For
illustrative purposes, we’ll examine two mid-level
tasks, inspect_part and init, used in our
inspection application. Our resources are the
CMM, the CCD camera, and the probe, as well as
computing platforms, for both hard real-time and
soft real-time performance.

Based on the node placement and
interconnection guidelines of section 2, the
developer “decomposes” the high level tasks into
subtasks as illustrated in Figure 3.

These tasks are then grouped into controllers
based on the bottom-up analysis of actuators to be

controlled. We have a probe, a camera, and a
CMM arm to control. Therefore, we have three
branches in our hierarchy. The grouping of tasks
into nodes for our example task is depicted in
Figure 4.

The next step is to create finite state machines
(FSM) for each of these commands at each of the
control nodes. These FSMs together define system
behavior. An example of an FSM for a prim level
goTo task is found in Figure 5.

The final step is to map the nodes onto specific
computing platforms. For example, the vision
branch in Figure 4 is mapped onto a soft real-time
platform (Sparc/Solaris) and the CMM and probe
branches are mapped onto a hard real-time
platform (PPC/VxWorks).

Figure 3: A task tree (task decomposition) for the inspect_part and init tasks.

Figure 4: A hierarchy of control nodes (RCS building blocks from Figure 1) with tasks mapped into nodes
for the inspect_part task.

4 Tools to support RCS

The RCS architecture and methodology need
tool support to facilitate system design and
maintenance. For this application, we use two tool
sets. For distributed communications we are using
the Communication Management System. This
tool and other supporting tools under development
at NIST form a comprehensive tool set for RCS
style system development [Shackleford 99]. This
development system was used at higher levels in
the application system hierarchy (task level and
above).

For the system hierarchy of Figure 4, we are
using a commercially available tool, called
ControlShell, from Real-Time Innovations, Inc.
(RTI). We will focus our discussion on the
ControlShell tool set. ControlShell is actually not a
single tool, but a set of several integrated software
tools that can be used to develop large and
complex control systems. It is a graphical,
component-based tool set for object-oriented, real-
time system development allowing synchronous
and asynchronous execution for a variety of
operating systems and target hardware. The target
application domain for the tool set is
electromechanical systems, but it is not inherently
limited to that domain.

ControlShell has a diagram editor in which the
user develops a graphical design for the
application. The diagram editor allows definition
and graphical interconnection of components.

Components requiring synchronous (cyclic)
execution of code can be grouped into sampling
environments for execution. FSM components are
also graphically defined in the diagram editor and
are mapped into an asynchronous process for
execution. At lower levels in the RCS hierarchy, we
sometimes need to run portions of an FSM on a
cyclic clock. Sending a cyclic pulse from a
cyclically executing component to cause an event
stimulus in an FSM satisfies this need.

There is a one-to-one map between the
graphical design and what executes, i.e., what you
see is what executes (WYSIWE). Within a single
graphical design, one can link component subsets
to several executable systems, e.g ., one can define
both simulation and real systems within the one
design.

Component-to-component interface
components can be defined in the diagram editor.
These interfaces encapsulate user-defined method
calls and data.

A run-time shell provides an execution
environment for the application within the host
operating system (VxWorks, Solaris, etc.). It
allows the execution of compiled code, the
modification of data values (at run-time),
debugging, and other facilities. The compiled code
is a relocatable object and, therefore cannot
execute without the run-time shell tool. Data
modification without recompile is available due to
a run-time data binding facility that dynamically
binds all data to the compiled code each sampling
cycle.

Figure 5: A finite state machine diagram (generated in ControlShell) for the prim level CMM_goTo_prim
task from Figures 3 and 4. Note the use of the cyclic pulse stimulus sent from the synchronous process.

A software oscilloscope, called Stethoscope, is
available for viewing any numerical data defined in
the data dictionary, without interfering with the
real-time process

A repository facility allows component and
application reuse within and among team
members.

RTI also offers several other tools that
integrate with the ControlShell tool set. NDDS
is used for distributed, real-time communications.
ScopeProfile is used for real-time process
analysis. MemScope is used for analyzing and
debugging memory problems. None of these tools
were used.

5 Developing a new RCS
application with ControlShell

We have developed a template system in the
ControlShell environment that will facilitate RCS
style real-time system development. This
template system is a ControlShell executable
consisting of various components that can be used
as a template for creating a new RCS-based
application. To develop a new application or a
new branch in an existing application, the user
simply copies and edits the template system files.
The template system consists of one branch of
three RCS nodes as shown in Figure 6. The
template system also contains reusable FSMs for
init and halt commands. To add additional
commands (tasks) to nodes, the developer would
make a copy of the init FSM component, edit it
as required, then add it to the parent FSM
component The template parent FSM is shown in
Figure 7. The newly generated command would
also have to be added to the appropriate command
interface.

In the template system, generic sensory
processing and world modeling components are
merely stubs to which application-specific code
would be added as needed and compiled. Template
interface components for command, status,
sensory processing (SP), and world modeling
(WM), as well as intra-node interfaces such as SP
to WM interfaces, have been defined in the
template system. The generic template component
in ControlShell, implementing the RCS building
block of Figure 1, is shown in Figure 8. This
component is the internals of the “node”
component of Figure 6. Within the “BG_COG”
component of Figure 8 is the parent FSM
component of Figure 7.

6 Real-time Issues
The inspection application and scenario were

chosen, in part, due to the real-time and distributed
control challenges we would have to overcome.
Both RCS and ControlShell have unique real-time
issues. The integration of the two technologies was
the stimulus for some important real-time effects.

Processing models for RCS have typically
handled real-time by specifying that the control
nodes, which execute FSMs, are required to 1) have
deterministic, non-blocking execution and 2)
execute, worst case, in less than one cycle period.
Other RCS execution models require cyclically
executing FSMs [Quintero 92]. While helping
assure determinism, this system overly constrained
certain aspects of execution. For instance, if the
nodes were executed each cycle on one processor

Figure 6: The generic template system for facilitating
RCS designs in ControlShell.

and sequentially from the top to the bottom, a
high level command would reach the bottom node
in one cycle. However, status would take n-1 cycles
to reach the top node from the bottom node for an
n level system, because of the top-down node

execution ordering. Additionally, a node could not
pass through many states per cycle. While real-
time efficient performance can still be met with
these constraints, system perspicuity is sacrificed,
since for the sake of clarity, it is often helpful to

Figure 7: The generic template parent FSM component (in ControlShell) for an RCS node. Note that the
init and halt FSMs are encapsulated within this parent FSM.

define several states with minimal or no processing
per transition. For example, such a situation occurs
between the states, initializeCounter and
computingWaypoints, in Figure 5, since no
stimulus is required for transition. In the alternate
execution model, there are no asynchronous
processes in the real-time execution system.
According to this model, adding interrupts will
sacrifice determinism, a key element of dependable
systems. However, in an execution model like
ControlShell, we have both synchronous and
asynchronous processes at our disposal. Each
process executes as a separate process in the real-
time operating system, but is intertwined through
method calls and shared data in the RCS design.
Such a link between synchronous and asynchronous
processes has at least two beneficial effects:

• since we model commands and status as
method calls, the method calls are
asynchronous, avoiding the n-1 delay
mentioned earlier

• since the FSMs are asynchronous, if there is
sufficient processing time during a given

cycle, the system can process as many stimuli
and state transitions for which there is
sufficient processing power

Finally, we found that successful real-time
execution was only possible when we gave a higher
priority to the synchronous process than that
given to the asynchronous process. This is, in part,
because we must guarantee that the tasks of the
asynchronous process never cause the tasks of the
synchronous process to fail to complete in any
sampling cycle. The asynchronous process is
roughly equivalent to a background process for the
system, which we execute with processor time
remaining after execution of the cyclic modules.
Therefore, our processing model for RCS still
requires that we have deterministic, non-blocking
execution of the synchronous code and that code
must always execute within the sampling period of
the sampling loop. However, under the new
processing model, we have the freedom to put
FSMs in the asynchronous process, which gives two
benefits (without seeming to sacrifice real-time,
dependable performance):

Figure 8: The generic template component for an RCS node. This is our implementation of the RCS building
block of Figure 1 using ControlShell.

• the ability to design finite state machines so
that nodes can transition through multiple
states in a single cycle

• more efficient processor usage

7 Object-oriented issues
In the software industry, there are many and

varied uses of the terms, architecture, components,
and objects: We will simply describe how we have
defined and used them and, more importantly,
discuss how they interact in our system.

RCS has been shown to map successfully into an
object-oriented environment [Huang 96]. Our work
here is to make this claim manifest in a real
application with a commercial off-the-shelf
(COTS) component-based objected-oriented tool.

In our view, objects support components,
components support the architecture, components
support objects, and the architecture supports
components. To be of any value, this support
interaction, as suggested in Figure 9, must help us
reach the goal of software engineering, namely, to
discover and create theories, architectures,
methodologies, and tools that facilitate the
software lifecycle.

The ControlShell tool defines the nature of the
interface between components and objects in the
tool and RCS defines the interface between the
architecture and the components. We will now
examine how our system can be viewed from the
architectural, component-based, and object-
oriented perspectives, in turn.

From an architectural perspective, our system
• defines component boundaries carefully to

minimize data bandwidth between
components, facilitate reuse, and keep any
complexity to a minimum

• defines building block template components
that can be used to facilitate design

• defines component interfaces and handshaking
between control nodes

• defines components within a control node and
the interfaces between those intra-node
components (see Figure 2)

• defines component taxonomy
From a component-based perspective, our

system
• can encapsulate other components and

objects, therefore, components do not have
to map to a specific class as do objects, i.e.,
components provide further encapsulation to
the system

• supports “what you see is what executes”
(WYSIWE) model

• creates component interfaces that can be
clearly exposed, standardized for reuse, and
modifiable for run-time execution

• defines the concept of a component “level” as
components embedded within components

• provides a component repository for
cooperative system development with strictly
defined and easily accessible software
component specifications [Horst 97] for
efficient code reuse

From an object-oriented perspective, our system
• provides three types of objects (called

“primitive components” in ControlShell):
data flow components in synchronous
processes, state transition components in
asynchronous processes, and atomic
components which can be synchronously or
asynchronously executed

• defines all processing elements as objects
• constrains all objects to live within

components
• automatically generates object source code

with user defined execution methods and data
• provides facilities to compile user code within

automatically generated object source code
• allows object inheritance and, in general, all

object-oriented principles are satisfied, e.g.,
use of object-oriented language (C++)

8 Conclusion
We have successfully demonstrated a complex

inspection system that utilizes an RCS architecture
and methodology supported by a component-based
COTS tool called ControlShell.

Figure 9: Simplified interdependency among
architecture, components, and objects

The real-time lessons learned are that
synchronous and asynchronous processes can
operate in an RCS architecture, if the synchronous
process is given higher priority. This is because the
synchronous process must complete its execution
each cycle. As a consequence, we gain more
efficient processor usage. We also gain the ability
to have more than one state transition per cycle in
the finite state machines.

From the object-oriented perspective, we are
fully convinced (though we have no quantitative
proof) that a well-formulated architecture and
methodology on top of a component-based object-
oriented tool will significantly increase design,
debugging, testing, and maintenance efficiency. As
a qualitative measure of this claim, one engineer
was able to design, debug, test, and demonstrate the
CMM motion control, probe control, and vision
control subsystems in about 0.5 man-years of
effort, using the RCS architecture, methodology,
and supporting tools. The CMM branch of the
hierarchy in Figure 4 was the first branch built and
tested. Later we were able to integrate and test the
probe branch with relative ease and efficiency using
the generic system template, the ControlShell tool
set, the RCS methodology, and the architectural
guidelines.

9 References
[Albus 96] Albus, J. S. and Meystel, A.M., “A Reference

Architecture for Design and Implementation of Intelligent
Control in Large Complex Systems,” International Journal
of Intelligent Control and Systems, Vol. 1, No. 1, (1996),
pp. 15-30.

[Horst 97] Horst, J., Messina, E., Kramer, T., Huang, H.,
“Precise definition of software component

specifications”, Proceedings of the IFAC Computer-Aided
Control System Design Conference, (1997).

[Huang 96] Huang, H. and Messina, E., “NIST-RCS and
Object-Oriented Methodologies of Software Engineering:
A Conceptual Comparison,” Proceedings of the Conference
on Intelligent Systems: A Semiotic Perspective, (1996).

[Kramer 98] Kramer, Thomas R., “The NIST DMIS Interpreter:
Version 2,” NISTIR 6252, (1998).

[Messina 99] Messina, E., Horst, J., Kramer, T., Huang H., Tsai,
T., Amatucci, E., “A Knowledge-Based Inspection
Workstation,” Proceedings of the 1999 IEEE International
Conference on Information, Intelligence, and Systems,
(1999).

[Quintero 92] Quintero, R. and Barbera, A.J. “A Real-Time
Control System Methodology for Developing Intelligent
Control Systems,” NISTIR 4936, (1992).

[Shackleford 99] Shackleford, Will, et al, “NIST Real-Time
Control Systems (RCS) Library: Tools for Control System
Development,” Web site address: http://eewww.eng.ohio-
state.edu/nist_rcs_lib/ , (1998).

